o b s b c tu re

What is soil structure and

Why do we care?

This presentation and all slide content is Copyright © by Engineering Technologies Canada Ltd. All rights reserved.

The naturally occurring grouping of individual soil particles into a larger grouping. (Also called an aggregate or "ped")

The *peds* are separated from adjoining peds by natural planes of weakness.

Soil that has structure <u>will break apart into</u> <u>predictable and</u> <u>characteristic shapes</u>

Structure relates to: Water Movement Aeration Water Retention Root Penetration

Type or Shape
Grade
Size (beyond the scope)

Natural Soil Structural Units Common in the Maritimes (Types)

Granular
Angular Blocky
Subangular Blocky
Platy

Structure Types or Shapes

Structure Types or Shapes

Type (shape)	Typical Permeability	Description	Comments
Structureless - Single grain	Rapid	No observable aggregation or joining of individual soil particles	Loose, incoherent mass of individual particles as in clean sands.
Granular	Rapid	Particles are joined into relatively small spherical units.	Peds look like "cookie crumbs"
Blocky	Moderate	Soils joined together to form larger units bounded by flat or rounded surfaces.	Observable sharp or rounded surfaces on peds.

Grade 0 – Structureless: Single Grain

Single Grain – No structural units; entirely non-coherent; e.g. loose

Sano.

Structureless – Single Grain: No discrete structural units observable in place or in hand sample. **Composed of** individual particles. Material is noncoherent.

Blocky (angular) –

faces intersect at sharp angles (planes)

BLOCKY STRUCTURE

Subangular Blocky – Polyhedrals with sub-rounded and planar faces, lack sharp angles

HORIZON

Structure Types or Shapes

Structure Types or Shapes

Type (shape)	Typical Permeability	Description	Comments
Prismatic or Columnar	Moderate	Structure is arranged in a vertical plane. Peds have relatively flat vertical surfaces.	Peds formed in a vertical arrangement. Less common.
Platy	Slow	Peds are arranged in layers on a horizontal plane.	Horizontal layering appearing as plates. Often associated with soils high in clay content.
Structureless - Massive	Slow	Solid structure. No evidence of any distinct arrangement of soil particles.	Appears as solid mass.

Prismatic/Columnar Structure

Prismatic/Columnar Structure

Platy – Flat and plate-like units

Structureless – Massive: No discrete structural units observable in place or in hand sample. Material is coherent.

Texture Plays a Major Role with Micropores.

Structure Plays a Major Role with Macropores.

Structural Type and Porosity

Most Porous	Granular (crumb)	
	Cube-Like	
	 Subangular Blocky 	
	Angular Blocky	
	Prism-Like	
	 Prismatic 	
	•Columnar	
Least Porous	Platy	

Structure and Water Movement

Soil Structure Grade

Structureless - single grain
 Structureless - massive

>Weak
>Moderate
>Strong

Grade 1 - Weak

Grade 2 - Moderate

Moderate - peds are moderately ell-formed and moderately evide in place or in a hand sample

Grade 3-Strong

Strong – **Peds are distinct** in place, separate cleanly, remain intact when disturbed

Soil structure affects density which can significantly affect permeability

Assessing Soil Density

	Asse	Soil Density	T. CERRO	
	#	Density	Typical Penetration	
		Classification	Depth of Probe (cm)	
1		Very Loose	> 10	(
			Probe penetrates very easily	
2		Loose	5 – 10	
			Probe penetrates easily,	
			Easily excavated with shovel	
3		Compact	2.5 – 5	
			Two-handed effort required to	
			push probe into soil,	
			Can excavate with effort	
4		Dense	1 - 2.5	
			Difficult to push probe into soil,	
			Difficult to excavate with shovel	
5		Very Dense	< 1	
			Very difficult to push probe into soil,	
			Very difficult to excavate with shovel	

Glacial Geology Affects Soil Density

- Ground Moraine Glacial Till lodged under the ice, wide assortment of particles, angular shapes, often dense
- Ablation Moraine Till let down from upper surface of ice during melting of glacier, non-compact

Glacial Geology Affects Soil Density

- Glaciomarine Deposits deposited by glacial meltwater in the ocean – not dense, unstratified, smaller range of particles
- Glaciofluvial Deposits Carried, sorted, deposited by streams from melting glaciers – loose, stratified.

Glacial Geology Affects Soil Density

PEI Soil Survey, see:

- See Table 6 (p.20-21)
- Table 8 (p.32)

For a guide to the type of glacial deposit for each soil survey type.

Mechanical disruption – tillage, sub-soiling, plow pan

Mechanical disruption -

smearing

Plant Roots

>In poorly structure soils they Root growth physically compresses the voids >In well structured soils they > Large roots can cause by-pass flow

Plant interactions

Root and redoximorphic features follow structure

Roots will not be as plential in a plassive soil. Look for the root

Conclusions

 Structure is an important but overlooked aspect of soil evaluation
 Structure must be viewed in a test pit
 The relationship between structure and water movement is complex.